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1.INTRODUCTION

Apart from being influenced by static load far the most structures in building
technology are influenced by dynamic load. Therefore, the resistance of a structure
against dynamic effects - i.e. the properties of fatigue - has to be established.

Fatigue is often defined as fracture due to initiation and propagation of cracks as
a result of repeated loads which do not themselves cause static fracture. Thus the
resistance of a given structure against a static stress can be sufficient whereas a
dynamic stress with a stress range which is much less than the static stress may
lead to fracture. The stress range, Ao, is defined as the difference between the
maximum and the minimum stress in one load cycle, see also figure 1.1.

AU = Umaz - Umzn (1.1)

where
Omaez = maximum stress in one load cycle [MPa]
Omin = minimum stress in one load cycle [MPa]
o[N/mm? ]
Omax |
s AO s s e
OminT
t[sek]

Figure 1.1: Specification of maximum and minimum stress in a load cycle.

Quantitative description of the properties of fatigue of a structure can be made in
two principally different ways.

In one of the descriptions the properties of fatigue of a structure are characterized
solely by knowledge of the total number of cycles to cause fracture, V., which for
a given harmonic load are used to develop fatigue fracture. This description is
typically represented by the so-called SN-curves (Wohler-diagrams).

In the other description the properties of fatigue of a structure are characterized by
the progress of the fatigue fracture in the form of crack growth. In this description
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the propagation phase of the fatigue fracture and the final state are dealt with.
This description is represented by a crack propagation theory.

The resistance against fatigue of a structure can be established by the use of an
SN-curve, which is illustrated in the light of a series of experiments carried out
at different stress ranges, see figure 1.2. Each of the experiments is carried out
at harmonic loading. For each of the experiments corresponding values of the
number of cycles to cause fracture, N., and stress range Ao are registered. In this
illustration it is traditional to denote the number of cycles to cause fracture N
and the stress range S.

S log(s)

N log(N)
(a) (b)

Figure 1.2: Typically SN-curve in arithmetric and logarithmic picture, respec-
tively. S = Ao = stress range, N = N, = number of cycles to cause
fracture.

It appears from figure 1.2b that a typical SN-curve forms a straight line in a
double-logarithmic picture, i.e.

log(Ac) = log(S) = k1 log(N) + k2 (1.2)
where

ki = slope of line

k;, = ordinate-intercept

If the number of cycles on the structure is known the maximal permissible stress
range, Ao, can be read. If the actual stress range on the structure is known then
the maximal permissible number of cycles, N, can be found.

Thus, the permissible stress range can be established from tables if SN-data for
similar structures exist. Otherwise it is necessary to carry out experiments.
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As it is seen from figure 1.2a, a threshold value of the stress range appears so that
stress ranges below this value do not cause fracture. Even though, the threshold
value is not well defined it can, as a general rule, be assumed that the value has
not been reached if the stress range does not cause fracture after 2-5 million cycles,
[Gurney, T.R.;1979, p.14] or even more.

The uncertainty of the threshold value is due to the extensive use of time which
is necessary for the determination, because the frequencies in the experiments
are usually in the range 3-160Hz, [Gurney, T.R.;1979, p.11]. 8-12 corresponding
S N-values are required for drawing an SN-curve.

Another description of the resistance against fatigue of a structure can, as men-
tioned earlier, be given by crack growth theories. The most frequently used crack
growth theories are empirically based and express the resistance against crack
propagation of a structure as

da

— = f(AK 1.3

9 fax) (13)
where

da = crack length increase [mm]

dN = increase in number of cycles

AK = Kmaz — Kmin = change in stress intensity factor in one load

cycle. In the following AK is named stress intensity factor

range [MPa+/m)]
K. = maximum stress intensity factor in one load cycle [MPa+/m
Kiin minimum stress intensity factor in one load cycle [MPa+/m

The stress intensity factor K, which is a value from fracture mechanics, is defined
by the stress field near a crack tip, c.f. [Hellan, K.;1985] and [Gansted, L.;1988].
In this way, this description assumes the existence of a crack.

The stress distribution in the neighbourhood of a crack is solely dependent on
the position of the point considered in proportion to the crack tip, whereas the
magnitude of the stresses depend on the applied load and the geometry of the
structure and the crack, which is expressed by K.

The stress intensity factor K can in general be written as, see [Schijve, J.; 1979],

K = o+v/maF (1.4)
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where
oc = applied stress
a = crack length
F = factor which depends on geometry and loading

The dynamic effects can be divided into 3 categories, see figure 1.3, i.e.

(a) deterministic, cyclic, constant-amplitude loading
(b) deterministic, cyclic, variable-amplitude loading

(¢) random loading

,_
—_—
S

AN : e
g W

(a) (b) (c)

Figure 1.3: Different types of loading. (a) cyclic, constant-amplitude loading. (b)
cyclic, variable-amplitude loading. (c¢) random loading,.

For the categories (a) and (b) the progress of the fatigue fracture in a structure
can be modelled by fracture mechanics. There is a number of empirical laws to
express the crack growth as a function of the number of load cycles, see chapters
3 and 4. On the other hand, establishment of laws to describe the crack growth
in structures influenced by random loading (c) is difficult , see chapter 5.

In addition to the type of loading the crack growth depends on

loading history
geometry of structure
material

boundary conditions
loading frequency

environment
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In the following chapter 2 the ideas behind the crack growth theories are described,
whereas the crack growth theories for the three loading categories (a)-(c) are dealt
with in chapter 3-5.
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2. CRACK PROPAGATION LAWS

As mentioned in chapter 1 it is possible to describe the fatigue process in two
ways, namely the SN-curves and the crack growth theories. The SN-curves will
not be further discussed, since only the crack growth theories give information on
the fatigue progress itself, thereby making it possible to predict critical moments,
e.g. increase of the crack growth rate.

To describe the crack growth in a structure subjected to fatigue a number of
physically and/or empirically based crack growth theories are established. The
basic ideas in these theories - stressing the parameters which have to be included
- are described in the present chapter.

A crack growth theory must express the connection between the load process and
the fatigue process.

The load process can be described by the applied stress range Ao, see (1.1) and
figure 1.1. The stress range Ao can be used both for deterministic, cyclic, constant-
amplitude loads and at variable-amplitude loads because Ao is well defined. If,
on the other hand, the load is random, the characterization of the load process
depends on the method used for determining Ao.

The fatigue process is characterized by the crack growth rate da/dN, see (1.3),
and the total number of cycles to cause fracture, N.. It should be mentioned that
after a crack is initiated, about 75% of the number of cycles to cause fracture are
spent on propagating the crack 25% of the final crack length ay.

Thus, the crack growth theory must be able to describe this fatigue process.

A physically based crack growth model can be put forward using a dimensional
analysis by which the physical problem, described by a dimensionally homogeneous
equation, is reduced to an equation consisting of dimensionless products, cf. [Sab-
nis, G.M., Harris, H.G., White, R.N. and Mirza, M.S.;1983, p.33]. Dimensional
analysis requires knowledge of the physical parameters assumed to have significant
influence on the problem. In [Cherepanov, C.P. and Halmanov, H.;1972], from
which the following is taken, an evaluation of the parameters that have influence
on the crack growth rate da/dN and thus on the fatigue process is made.

The crack growth rate will depend on the load process represented by the stress
intensity factor K, varying between Kp,in and Kmez, and the number of cycles
N. Furthermore, the properties of the material in the form of Young’s modulus
E, yield stress f,, Poisson’s ratio v and the surface energy v have influence. The
surface energy is the energy used for the formation of a unit area new crack surface.

Thus

da

W :f(I{ma:l:aI(minaNaE7fy7V’7) (21)
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Information about the function f in (2.1) is established by an energy consideration.
The crack energy calculated per unit thickness has to be equal to the total work per
unit thickness performed by the process corresponding to the crack length increase
Sa, see also figure 2.1. Thus it is assumed that the energy does not vary in the
direction of the thickness and the problem is thereby reduced to a two-dimensional
problem.

2v6a = 6W + 6A, (2.2)
where

ba = crack length increase [mm]

§W = crack work per unit thickness [Nm/mm)]

§A, = volume work per unit thickness [Nm/mm]

Figure 2.1: Schematic illustration of the crack and the plastic zone extension.

The crack work éW is the irreversible work done by the plastic zone as it performs
a rigid-body motion in the direction of the crack extension. W depends on the
load parameter K, varying between K,in and K4z, and o¢ describing the pre-
loading history. Further the material parameters E, f, and v. Finally 6W is
dependent on the crack length increase éa. Dimensional analysis leads to

K? fy o0
z ba ag(—E—, E,y)

oW =2

where

oy = dimensionless function




Fatigue of Steel : State-of-the-Art-Report 9

The independent variable in the dimensionless part containing 6W is chosen as E
because it is a measure of the resistance against crack propagation.

The volume work 64, is the irreversible deformation work due to the increase
in the plastic zone size during loading. 6A4, depends on the same load and ma-
terial parameters as §W. Further, 64, is dependent on the change of load 6K
corresponding to the crack length increase 6a. Dimensional analysis leads to

I{ f J9
6A, = f3 — 6K « (E E’V) (2.4)
where
a3 = dimensionless function

The independent variable in the dimensionless part containing 64, is chosen as f,
because the size of the plastic zone ry depends on the yielding properties of the
material.

Insertion of (2.3) and (2.4) into (2.2) result in

I fy 00

1{3 o OK
v = Faz( 3(fy —

)+ T P

which by reduction gives

__ﬂ_ :I{.? + a3(£Ey-7gE‘Q'aV) EK?3 &
az(‘%’%,’/) az(‘%,%,y) f3 ba

f, 00  EK® 6K

s2 /—2: Nl
K. - K a4(E L v) i Ga

ba Iy @ EK3
(5 g —v)

6K~ K K7 (25)
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K, is the critical stress intensity factor, see also section 3.1.

Integration of (2.5) over one load cycle gives

E'E hE K?
4
f UO - 1{2 I{r2naz
Aa=oas(F, 7 V) 5 (—-)[I c In W F (Bas ~ Emiall
Y
I{g'laz ‘[{gnln I\' I mazx
where
fy o0 EKC2
B=ou(ZH 7 V) S5
E'E’ 215
As continuous variables (2.6) becomes
d K2 . . — K%, K? - K2
a — _ﬂ [ mazx min + ln X Xma.’l:] (2-7)

dN K? Kz — K2,

min
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The critical stress intensity factor K. is determined experimentally. The size of
the parameter # depends on the type of load expressed by oo which, as mentioned
earlier, stands for the pre-loading history.

Only the number of cycles influence the following crack propagation if the loading
is constant-amplitude. The order in which the cycles are applied at variable-
amplitude loading and random loading is decisive, see chapter 4 and 5.

The pre-loading history can also be taken into account when calculating Koz
and K,.;» whereby og = 0 and  becomes a constant.

Establishment of the empirical parameters, which enter the crack growth expres-
sions, requires knowledge of the crack growth rate da/dN. Thus related values of
a and N have to be transformed into da/dN. This differentiation can be made in
several ways since the derivative of the function a = f(V) is not uniquely estab-
lished because, a and N are only known at discrete points. A correct equation for
the crack growth rate will by integration reproduce the original a, N-data.

Instead of determining the crack growth parameters on the basis of da/dN [Oster-
gaard, D.F. and Hillberry, B.M.;1983] suggest that the parameters are determined
directly from the a, N-data. This will correlate the crack growth rate equation
directly with the raw data.

N a 1
/ N =N = | =da (2.8)
0 aog f

where f is given by (2.7), (3.1), (3.4), (5.1) or (5.2) perhaps in combination with
(4.5)

The crack growth parameters which enter the right-hand side of (2.8) are estimated
and then the equation is integrated numerically. This procedure is continued until
the parameters describe the a, N-data as closely as possible.

Expression (2.7) forms the basis of the evaluation of the empirically based crack
growth theories, see sections 3.2 and 4.3.
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3. CRACK PROPAGATION UNDER DETERMINISTIC, CYCLIC,
CONSTANT-AMPLITUDE LOADING

In the past 25 years several crack propagation laws to describe crack growth un-
der constant-amplitude loading have been developed, see [Paris, P. and Erdogan,
F.;1963]. Common to the laws is that they express the crack growth rate da/dN
as a function of for instance the crack length a and the stress range Ao, see figure
1.1.

The purpose of this chapter is to describe some of the crack propagation laws and
their applications.

3.1 Empirical Crack Propagation Laws

In this section two of the most frequently used empirical crack propagation laws
are described, i.e. Paris’ law and Forman’s law.

Paris’ law, (3.1), expresses explicitly the connection between the loading process,
which is applied to a given structure, and the process of fatigue in the structure.
The loading process is described by the stress range Ao - see also chapter 2 - while
the process of fatigue is characterized by the crack propagation rate da/dN and
the number of cycles, N, to cause fracture. The process of fatlgue can by Paris’
law be described as a series of crack front extensions.

da
= C(AK 1
% oany (3.1)
where
da = increase in crack length [mm]
dN = increase in number of cycles
C = material constant [mm/(MPa./m)™]

m = material constant

AK = Kz — Kmin = stress intensity factor range [MPa,/m
K,... = maximum stress intensity factor in one load cycle [MPay/m
Kmin = minimum stress intensity factor in one load cycle [MPa\/m

The material constants C and m are correlated, cf. [Tanaka, S., Ichikawa, M. and
Akito, S.;1981], but the correlation between them will depend on the physical units,
[Yao, J.T.P., Kozin, F., Wen, Y.-K., Yang, J.-N., Schuéller, G.I. and Ditlevsen,
0.;1986].
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The stress intensity factor K, which is a quantity from fracture mechanics defined
by the stress field near a crack tip, is among other parameters a function of the
stress ¢. Furthermore, K is dependent on the geometry of the crack and the
structure.

The crack growth rate da/dN as a function of the stress intensity factor range AK
will in a double-logarithmic illustration give a curve as shown in figure 3.1.

log da/dN corresponding to
i KmaleKc
| |
| |
| |
|
| I
I
| |
| I
| |
| |
I |
l |
] |
: ; log AK
ARen
crack growth | none % stable % unstable
da/dN U = f (AK) B
AK <AKth % >AKth ,% iAKth
KmaX <KC <KC =KC

Figure 3.1: Typical (AK) — (da/dN) relationship in a double-logarithmic scale.
AK,, = the threshold value of AK, K, = the critical value of the
stress intensity factor at which the final, uncontrolled fracture occurs.
The dashed line to the right corresponds to Kmaz = K¢, where Koz
is the maximum stress intensity factor in one load cycle.

It appears from figure 3.1 that Paris’ law has only a complete validity in the
interval (AK > AKip A Kmar < K.), i.e. where the relationship is described by
a straight line. The threshold value AK;, must be exceeded before crack growth
occurs. When the maximum stress intensity factor K., equals the critical value
K. the final, uncontrolled fracture takes place.

From expression (3.1) it is seen that da/dN does not depend upon the mean stress
om but only on the stress range Ao. Regard to o, has been proposed by Forman,

see [Forman, R.G., Kearnly, V.E. and Engle, R.M.;1967] and [Schijve, J.;1979].

As the maximum stress intensity factor equals the critical stress intensity factor
K., the crack growth rate will, as shown in figure 3.1, assume infinitely values, i.e.
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lim da

Kmaz— K¢ EN e (32)

By inserting

AK
{maz = o
. 1—-R
where
-K—min
B= R s
(3.2) becomes
da

AK—-»l(llIER)KC aN — ° (3.3)

It is assumed that the crack growth rate has a form given by (3.1) and further,
has a singularity given by (3.3). Forman has proposed

da _ C(AK)™
AN~ (1-RK.-AK

(3.4)

where

material constant
= material constant

3 Q
I

and

K is given by (1.4)
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Several other empirical crack growth laws exist. These will, however, not be
discussed further because they are only variations of Paris’ law.

Further, some energy-based crack growth laws exist, see [Kanazawa, T., Machida,
S. and Itoga, K.;1975], [Zheng, X. and Hirt, M.A.;1983] and [Chand, S. and Girg,
S.B.L.;1985]. Since the crack growth laws are not very frequently used, and since
they are very different, they will not be further described in the present paper.

3.2 Evaluation of The Crack Propagation Laws

The purpose of this section os to evaluate the crack propagation laws, which are
described in section 3.1, with regard to their applicability. The evaluation is
performed by comparison with the crack propagation expression in chapter 2 and
the experiments which are mentioned by different authors.

The validity of (2.7) has been investigated by [Cherepanov, G.P. and Halmanov,
H.;1972] in which a serie of experiments make the basis of the investigation. The
experiments, which are carried out with specimens made of aluminium alloys
(2024-T3 and 7075-T6), show very good agreement with (2.7) at two different

values of J.

The comparison between (2.7) and Paris’ law (3.1) also show good agreement. The
reason is that (2.7) can be reduced to (3.1) with m = 4 for K;n = 0. Experiments
give m = 3.6 for the aluminium alloys mentioned above.

[Chow, C.L., Woo, C.W. and Chang, K.T.;1986] have made experiments with
mild steel and aluminium alloys (7076 and 2024) among other materials. Even
at different stress ratios, R, experiments show that the crack propagation rate is
satisfactory described by (3.1). There is not complete agreement on the indepen-
dence of the stress ratio. Thus, [Liaw, P.K., Leax, T.R., Fabis, T.R. and Donald,
J.K.;1987] has observed that an increase of R results in an increase of the crack
growth rate.

As described in section 3.1 Forman’s equation (3.4) takes regard to the stress
ratio. [Cherepanov, G.P. and Halmanov, H.;1972] has found that (3.4) gives a
reasonable agreement with (2.7) for one set of the parameters ( K., R, C and m).
Other values of the parameters have not been used to compare (3.4) to (2.7).

Experiments carried out at different values of R with specimens made of 7075-T6
aluminium alloy show, according to [Chand, S. and Girg, S.B.L.;1985], that the
crack growth is extremely well described by (3.4). Corresponding results appears
from [Forman, R.G., Kearney, V.E. and Engle, R.M.;1967] for 7075-T6 and 2024-
T3 aluminium alloys. Finally, the applicability of (3.4) can be seen in [Chow, C.L.,
Woo, C.W. and Chang, K.T.;1986], where it for both aluminium alloys (7076 and
2024) and mild steel has been observed agreement between experiments and (3.4).

Thus, it can be concluded that, both Paris’ law (3.1) and Forman’s equation (3.4)
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can describe the crack growth rate in a satisfactory way. But, after all, (3.4) gives
the best description if different stress ratios appears. It appears, that the specimens
in far the most experiments are made of aluminium alloy, but the conclusions can

be transfered to mild steel.
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4. CRACK PROPAGATION UNDER DETERMINISTIC, CYCLIC,
VARIABLE-AMPLITUDE LOADING

As mentioned in chapter 1 far the most loads on structures in building technology
are of a random character. In this chapter the effects of deterministic, cyclic,
variable-amplitude loading, i.e. a loading in which every cycle is well defined,
are investigated. These are investigated for the purpose of explaining the effects
which can be registered at random loading, see chapter 5. Further, one of the
crack growth laws which take account of variation of the amplitudes is described.

4.1 Loading Sequences and Their Effects

A possible grouping of deterministic, cyclic, variable-amplitude loading sequences
is shown in figure 4.1 in which the most important variables are also given.

VARIABLE-AMPLITUDE IMPORTANT EXAMPLES
LOADING VARIABLES

single overload ﬂfLﬂJUmm

magnitude of overloads

overloads repeated overloads IUMM

sequences in

overload cycles

blocks of overloads ) ﬂﬂﬂﬂﬂj‘mjmﬂﬂ
sequences of steps
(high-low)

step loading magnitude of steps

sequences of steps
(low-high)
size of blocks
programmed sequences of
block loading amplitudes distribution function

of amplitudes

Figure 4.1: Types of variable-amplitude loading and the most important variables.
After [Schijve, J.;1976, p.7].
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When a deterministic, cyclic, variable-amplitude loading acts on a structure the
crack growth depends on the order in which the cycles are applied. The reason is
that the crack growth in one cycle is a function of : the geometry of the crack before
the cycle started, the state of the material at the crack tip and the magnitude of
the load cycle.

In the following some of the effects which can be observed if a structure in modus
I is subjected to overloads are described. An overload is a cycle whose numerical
value and range exceed the most common cycles. Modus I corresponds to an
opening mode in which the load acts orthogonally to the direction of the crack
propagation, see also [Hellan, K.;1985] and [Gansted, L.;1988].

The most simple case is a single overload. The overload sequences shown in figure
4.2 are considered.

P P P P
+ + + +

(a) (b) (c) (d)

Figure 4.2: Overload sequences. (a) Tensile overload. (b) Compressive-tensile
overload. (c) Tensile-compressive overload. (d) Compressive overload.

After [Fuchs, H.O. and Stephens, R.1.;1980, p. 194].

The loading sequence shown in figure 4.2(a) causes a delay in the crack growth
(retardation) while the situation in figure 4.2(d) results in an acceleration of the
crack growth. The effect of acceleration is less pronounced than the effect of
retardation, cf. [Schijve, J.;1976]. The immediate cause for this deviation seems
to be different material properties in tension and compression. A more plausible
explanation is that the in the latter case the material is compressed, and thus
the material is accumulated within a given space. This is considered to be more
difficult than separation of the material (tension).

Likewise, if a compressive overload is followed by a correspondingly tensile overload
- figure 4.2(b) - a retardation of the crack growth is obtained. However, it is not
as pronounced as the purely tensile overload, figure 4.2 (a). A small retardation is
obtained if a compressive overload succeeds a tensile overload, figure 4.2(c). This
has also been observed by [Porter, T.R.;1972].

The crack growth progress in above-mentioned cases (a)-(d) is shown in figure 4.3.

Several experiments show that for a given value of low-load, the higher the value
of high-load, the greater is the delay in crack propagation. This has been ob-
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served by [Hudson, C.M. and Raju, K.N.;1970], [Porter, T.R.;1972] (both on
aluminum alloy 7075-T6), [Probst, E.P. and Hillberry, B.M.;1974] (aluminum
alloy 2024-T3) and [Rice, R.C. and Stephens, R.I;1973] (low strength steel).

almm]

\ constant
(d) amplitude (c) (b) (a)

= N

Figure 4.3: Crack growth curves for loading as shown in figure 4.2 (a)-(d). After
[Fuchs, H.O. and Stephens, R.1.;1980].

Occasionally it is possible to observe a delayed retardation of the crack growth as a
consequence of a tensile overload. This form of retardation appears primarily when
the overload is much greater than the maximum load in the other cycles in the load-
ing sequence. Thus, an acceleration is initially obtained before the retardation oc-
curs, see [Schijve, J.;1976] and [Rice, R.C. and Stephens, R.1.;1973] and figure 4.4.

Ao

A

da/dN

t

Figure 4.4: Illustration of the crack growth rates before and after a single tensile
overload, which causes delayed retardation. After [Corbly, D.M. and
Packman, P.F.;1973|.




22 Lise Gansted

From figure 4.4 it is seen that the crack growth behavior following a single tensile
overload consists of a delayed retardation period (momentary acceleration and
then retardation) followed by an increasing crack growth rate until the original
crack growth rate is obtained.

By repeated overloads or blocks of overloads the same effects as mentioned above
are obtained but to a higher degree. [Porter, T.R.;1972] found that the more cycles
at small amplitude between the repeated overloads, the longer the retardation.

This has also been observed by [Rice, R.C. and Stephens, R.I.;1973].

Furthermore, the retardation is increased with increasing numbers of overload cy-
cles up to a limit. If only 1 overload is introduced 25% of the maximum retardation
will be obtained whereas 10 overloads in one block result in 50% of the maximum
retardation, see [Himmelein, M.K.;1974], [Corbly, D.M. and Packman, P.F.;1973]
and [Hudson, C.M. and Raju, K.N.;1970].

Complete crack arrest at the small amplitude level for overload/small amplitude
ratios greater than 1.5-2.0 has been observed when more than one overload is
introduced.

The possible causes of the interaction effects by variable-amplitude loading are
described in the following.

When an overload succeeds a sequence of small-amplitude cycles this overload
gives rise to a plastic zone of larger extension than the plastic zone originating
from one of the preceding small-amplitude cycles. At the moment the overload
decreases from its maximum value to zero - i.e., when no external load is acting
on the crack tip - residual stresses will arise in the plastic zone.

The sign of these residual stresses depends on the sign of the external load that
caused the plastic zone, i.e. the sign of the overload. A tensile overload will lead
to compressive residual stresses and vice versa.

When subsequently the amplitudes of the following cycles reassume their former
value the effect from these on the crack growth is influenced by the residual stresses.
Likewise, a great deal of the following small-amplitude cycles will be spent sur-
mounting the zone of residual stresses. Not until the residual stresses have been
eliminated at the crack tip will the crack growth rate assume its previous value.

Due to the compressive residual stresses the crack is not completely open when
loaded. This is because the plastic deformations result in contact between the
fracture surfaces before complete unloading has taken place. Crack closure is said
to occur, cf. [Schijve, J.;1979] and [Corbly, D.M. and Packman, P.F.;1973]. The

phenomenon of crack closure is further described in [Gansted, L.;1988].

The crack is thus closing at a stress which exceeds the stress corresponding to
complete unstressing. The effective stress range Aoeyy is hereby reduced

A‘7eff::0'maz_0'cl (4—1)
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where
Omez = mMaximum stress in a load cycle [MPal]
o = crack closure stress = stress at which the crack is closed.

[MPal]

Crack propagation only takes place when the crack is fully opened, and therefore,
the reduced effective stress gives rise to a smaller crack growth. Retardation is
said to occur.

Further crack tip blunting causes a reduction of the stress concentration resulting
in smaller crack growth, cf. [Druce, S.G., Beevers, C.J. and Walker, E.F.;1979].
Crack tip blunting is due to high tensile stresses.

The tensile residual stresses give rise to an increased effective stress whereby the
crack growth is accelerated.

The crack closure stress o will vary at variable-amplitude loading. The variation
of o, in a loading sequence consisting of cyclic, deterministic, constant-amplitude
loading and one tensile overload appear from figure 4.5.

T

S e

Figure 4.5: Variation in crack closure stress when one overload is introduced. 1:
Ocl = Omin 2: Decrease in g. 3: 0¢ > Omin, Ol Increasing 4: oy >
Omin, Ocl decreasing 5: 0c; 2 Omin.

For constant-amplitude loading o¢ > 0min. After introducing the tensile overload
a decrease in o, appears which causes an accelerated crack growth. After this
oc is increasing and when oo > Omin the effective stress range Aoy is reduced,
i.e. retardation occurs. At some moment another decrease in o, occurs and so
Ao,sy is increased. When o reassumes the value for constant-amplitude loading
the retardation is said to be ended.

This variation in o, is among others observed by [Schijve, J.;1979] and [Fuchs,
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H.O. and Stephens, R.1.;1980].

4.2 Wheelers Crack Propagation Model

Several crack propagation laws exist which take account of retardation due to
overloads. The most important is the Wheeler-model.

The model seeks correlating crack propagation due to variable-amplitude loading
with crack propagation due to constant-amplitude loading,.

The Wheeler-model which gives an empirical description of the crack growth, see
[Wheeler, O.E.;1972], takes its origin in the crack growth-theoretical connection
between the crack growth rate da/dN due to constant-amplitude loading and the
stress intensity factor range AK.

da "
N = f(AK) (4.2)

From (4.2) it is seen that the crack length after N cycles of constant-amplitude
can be approximately expressed as

N
any =ag+ »_ f(AK:) (4.3)
i=1
where
ag = initial crack length [mm)]
AK; = stress intensity factor range in the i’th cycle [MPay/m]

Wheeler proposes (4.2) corrected for variable-amplitude loading by introducing
an empirical retardation parameter Cre; for the i’th load cycle after a tensile
overload.

— Tyi ]d . 3
—u——]® for a; +ryi < aor + oL

C’ret,i = (44)
1 for a; + ry;i > aor + oL
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where
ryi = extension of the plastic zone at the crack tip in the i’th load cycle [mm]
ro, = extension of the plastic zone due to a previous overload [mm]
ao, = crack length at the time when overload is introduced [mm)]
a; = crack length to an arbitrary time after introducing the overload [mm]
d =  empirical coefficient

The meaning of the symbols is also shown in figure 4.6.

Ao
I N
overload
affected
a4 ford plastic

zone

\ N

instantaneous
plastic zone

gL, oL

ooy o
Figure 4.6: Schematic outline of plastic zones at the crack tip due to load cycles
of large and small amplitude, respectively.

By introducing (4.4) in (4.3) the Wheeler crack length is

N
an = ag + Z Cret,if(AICi) (45)

=1

where

f for example is given by Paris’ law (3.1) or Forman’s equation (3.4)

The crack growth in the i’'th load cycle is retarded if the plastic zone due to this
cycle is situated inside the plastic zone due to the overload. When the actual cycle
is causing a plastic zone which exceeds the extension of the plastic zone due to
the large load cycle the effect of retardation is assumed to be ended. For d = 0 no
retardation of the crack growth occurs.

Characteristic of the Wheeler-model is that it does not give any possibility for tak-
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ing accelerated growth in to consideration. Therefore, the model cannot describe
delayed retardation.

4.3 Evaluation of Wheelers Model

The pupose of this section is to evaluate Wheelers model (4.5), which describes
crack growth under deterministic, cyclic variable-amplitude loading, see section
4.2. The evaluation is primarily performed by comparison with the experiments
which are mentioned by different authors.

The validity of (2.7) was proven in section 3.2. The parameter oo, which stands for
the pre-loading history, is changed and thus f is changed, when variable-amplitude
loading is introduced. A direct comparison between (4.5) and (2.7) has not been
performed.

Wheelers model gives a good describtion of the retardation due to deterministic,
cyclic loading in which one or more tensile overloads are introduced, cf. [Corbly,

D.M. and Packman, P.F.;1973] and [Wheeler, O.E.;1972].

The effects of acceleration can not be described by Wheelers model, and therefore,
it is not possible to take regard to delayed retardation. That is, if a great overload
appears, Wheelers model results in a poorer description of the crack growth rate.

Thus, it can be concluded that in many cases Wheelers model gives a good de-
scription of the crack growth.
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5. CRACK PROPAGATION UNDER RANDOM LOADING

As mentioned in chapter 1, the dynamic load on a structure are often of random
character. The purpose of this chapter is to describe how the random load pro-
cess can be characterized and which parameters that have to be considered when
describing the fatigue process. Further, some crack growth models are described
and evaluated.

5.1 Introduction

Unlike the deterministic loading, the random loading can not be defined by a math-
ematical expression. Therfore, the random loading is often modelled as Gaussian
stochastic processes characterized by the mean and the variance, cf. [Madsen,
H.0.;1982] and [Schijve, J.;1979]. Further, it is often assumed that the process is
stationary, i.e. the statistical properties are independent of time. Both Gaussian
and stationary stochastic processes are further described in e.g. [Parzen, E.;1962].

Different realizations of the loading history can be performed by simulation if the
distribution of the stochastic process is known, see figure 5.1. Then, the crack
growth rate can be expressed, because the random loading is decomposed into a
collection of discrete load cycles.

These load cycles have to be defined and counted. Several counting methods exist
of which the Rainflow Counting Method and the Range Pair Counting Method are
the two most common.

Load

70 ¢

60 +
1 45

50 -

40 T

30t 25 30

20 T 15
10T 10 0 .
S Time
-10 0

-10+ -5
-20 7 -15

60 ; 60

-307 -30
-40 + -35

-50+
_60 +4
-70+

-50

Figure 5.1: Realization of a stochastic process.
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Figure 5.2: The principle in the Rainflow Counting Method.
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The procedure in the Rainflow Counting Method appears from the following and
figure 5.2. The text in the brackets refers to figure 5.2.

1. The realization of the stochastic process is replaced by a sawtooth pattern with
the magnitude of the peaks and troughs unchanged. (Figure 5.1 — figure 5.2a).

2. The loading is rearranged to start with the highest peak, (Figure 5.2b: 60).

3. Start from the highest peak and go down to the next reversal, (60 — 10).
Proceed horizontally to the next downward range and go down to the next
reversal, (10 — -35) and (-35 — -50). If there is no range going down from the
level of the trough at which was stopped, proceed upward to the next reversal,
(-50 — 0).

4. Repeat the same procedure upward instead of downward, (0 — 60) and continue
these steps to the end.

5. Repeat the procedure 2-4 for all parts that were not used in previous proce-
dures. (Figure 5.2¢: 60 — 30, 456 — -5 — -35, -39 — -10 — 45, 0 — -15, -15
— 0, 10 — 40, 40 — 10, figure 5.2d: 25 — -5, -5 — 15 — 25, -10 — -30, -30
— -10 and figure 5.2e: 15 — 0 — 15).

Thus, it is assumed that the numerical greatest peak value is positive. If this is
not the case, start from the smallest trough and go upward instead.

Each complete path, e.g. (60 — 10 — -35), is regarded as a half cycle (simple
range). The half cycles are counted and the result for the realization in figure 5.1
and figure 5.2 is given in tabel 5.3.

Range Positive half-cycles Negative half-cycles Total
_ cycles
110 -50 — 0 — 60 60 — 10 — -35 — -50 1
80 -35 — -10 — 45 45 — -5 — -35 1
30 10 — 40, -5 — 15 — 25 40 — 10, 60 — 30, 25 — -5 2%
20 -30 — -10 -10 — -30 1
15 -15—0,0 — 15 0—-15,15—10 2

Tabel 5.3: Rainflow Counting corresponding to figure 5.1 and figure 5.2.

One of the disadvantages using the Rainflow Counting Method is that information
on the stress ranges which have actually occurred is discarded. Further, stress
ranges of greater size are introduced, compare tabel 5.3 and tabel 5.4.

In the Range Pair Counting Method, a range is defined as the part of the real-
ization between two adjacent points of reversal. Both the positive (ascending)
and the negative (descending) ranges are counted. The cycles are formed by pair-
ing positve and negative ranges of the same size. A more simple method is to
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count all the ranges, positive as well as negative, and then the total number of
ranges of same size is divided by two in order to get the number of cycles of the
corresponding size. The results for the realization in figure 5.1 is given in tabel 5.4.

Range Positive ranges Negative ranges Total
cycles
75 -30 — 45, -15 — 60 40 — -35, 25 — -50 2
50 50 — 0 60 — 10, 45 — -5 11
30 10 — 40 60 — 3 1
25 -35 — -10,0 — 25 1
20 -5 — 15 -10 — -30 1
15 15—0,0—-15 1

Tabel 5.4: Range Pair Counting corresponding to figure 5.1.

In this method, information on the stress range which have actually occurred is
retained, but information on the level at which they have occurred (mean stress
and peak stress of each range) gets lost.

A disadvantage using the Rainflow Counting Method or the Range Pair Counting
Method is that the sequence of the cycles gets lost. As described in chapter 4, the
order in which the load cycles are applied on a structure have a descisive influence
on the crack growth progress. This is due to the interaction effects (retardation
and acceleration).

The crack growth rate da/dN can, if the loading history is of a relativ simple
random nature, be described directly as a random process determined by the
loading history, cf. [Arone, R.;1986].

If the case is not as above, the crack growth rate has to be described by a different
random process. [Jacoby, G.H. and Nowack, H.;1972] have by analysis of test data
concluded that both the Weibull distribution and the Log-normal distribution are
able to describe the crack growth rate.

Determination of the load process is not the only parameter, which influence the
fatigue crack growth in a structure influenced by random loading.

Only if one or more cracks are initiated and propagated, fatigue can appear in a
structure. Thus, it has to be established where the cracks will appear and which
size they will have. This subject will not be further discussed in this paper, but
the problem has been investigated by [Berens, A.P. and Hovey, P.W.; 1983] and
[Trantia, G.G. and Johnson, C.A.;1983].

Fatigue and reliability are closely related. Thus, a fatigue reliability analysis con-
sists of estimating the probability of survival (non-failure and the probability of
safe operation (strength greater than a certain limit) when a structure is subjected
to a random loading. The relation between fatigue and reliability is investigated

by [Talreja, R.;1979a] and [Talreja, R.;1979b]. This subject is nor further discussed
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in this paper.

Finally, a proper fatigue crack growth model has to be selected so the fatigue in
similar structures influenced by random loading can be described. Some of the
existing models are investigated in section 5.2.

5.2 Fatigue Crack Growth Models

In this section different crack growth models are described. The first and second
are based on crack growth models used in constant-amplitude loading.

The most common is to use the root mean square value of the stress intensity
factor, AKy ms, for example in combinaton with Paris’ law (3.1).

da . m

'HV.' == C(AIers) (51)
where

da = increase in crack length [mm)]

dN = increase in number of cycles

o = material constant [mm/(MPa\/m)™]

m = material constant '

AKpms = [} Tili(AK)Y? MPay/ml

N = number of cycles

AK; = stress intensity factor range in the i’th cycle [MPa4/m)]

This method i‘s used by several authors, e.g. [Barsom, J.M.;1973] and [Alawi,
H.;1986], and it gives a good describtion of the crack growth rate if dNV is chosen
small.

[Hudson, C.M.;1981] used AK;m, in the Forman equation (3.4), i.e.

da C(AK )™
dN =~ (1= Rms)K: — AKpms

(5.2)

where
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K. = critical stress intensity factor [MPa+/m]

AK,ms =  Kmaez,rms — Kmin,rms [MPay/m| = root mean square va-
lue of stress intensity factor

Ryms =  Kmin,rms/Kmaz,rms = T00t mean square stress intensity
factor ratio

N ;o E =
I{maz,rms — []l\f Zi=1(I‘mﬂz)2]2 [ [MPa‘ m
. N /g~ 1
Ixmin,rms = [']lv- Zi:l(hmin)Z] 2 [MPa’V m]

(5.2) gives a good description of the crack growth rate at different stress ratios,
c.f. [Hudson, C.M.;1981], see also section 3.2.

Neither (5.1) nor (5.2) can describe the interaction effects because they do not dis-
tinguish between tensile and compressive overloads. All attempts to use constant-
amplitude models as a basis of a model describing random fatigue appears to fail.

Several other attempts have been made. For example [Chakrabarti, A.K.;1980]
uses a dislocation model in which it is assumed that, the crack only grow when
the dislocation distribution becomes critical. The critical dislocation distribution
is difficult to determine. This model will not be further discussed in this paper.

Until now, no adequate model has been purposed but, [Bogdanoff, J.L. and Kozin,
F.;1985] have developed a numerical model based on Markov Chain theory and
the state of damage. It looks like, this model might be useful and it will be further
discussed in coming papers.
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6. CONCLUSION

The main purpose of this paper was to describe and evaluate the existing crack
growth expressions.

In chapter 3 it was found that the empirical Paris’ law (3.1) gives a good de-
scription of crack growth in a structure subjected to constant-amplitude loading.
A disadvantage is that the material parameters C' and m must be determined
experimentally and that the variance - especially for C' is great.

It was also found that the Forman equation (3.4) is useful when different stress
ratios is introduced, but still it is only valid for constant-amplitude loading.

If the structure is subjected to variable-amplitude loading the crack growth model
has to take into account the interaction effects due to overloads. The effects are
retardation, acceleration and delayed acceleration.

The Wheeler model (4.5) seems to give a reasonable description of the crack growth
rate if the overloads are tensile. But, if the overloads are of compressive character,

the Wheeler model fails.

Crack growth under random loading was dealt with in chapter 5. On the basis
of chapter 4 and chapter 5, it can be concluded that a good fatigue crack growth
model must be able to describe:

e retardation (residual compressive stresses)

e acceleration (residual tensile stresses)

e delayed retardation (acceleration + retardation)
e crack closure

e crack growth due to random material properties

e the sequence in the load cycles

As it was mentioned in chapter 5, no adequate model exists. Either an analytical
or a numerical model, which can be verified experimentally, and which fulfills the
demands above, is still an unsolved problem in fatigue analysis.
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crack length

initial crack length

crack length at the time when overload is introduced
critical crack length

final crack length

crack length to an arbitrary time after introducing an
overload

crack length corresponding to N

crack length increase

volume work per unit thickness

material constant

retardation parameter

empirical coeflicient

crack length increase

increase in number of cycles

Young’s modulus

function

yield stress

constant, : = 1,2

stress intensity factor

critical stress intensity factor

maximum stress intensity factor

root mean square of the maximum stress intensity factor
minimum stress intensity factor

root mean square of the minimum stress intensity factor
stress intensity factor range

stress intensity factor range in the ¢’th load cycle
root mean square value of stress intensity factor range
threshold value of AK

material constant

number of cycles

number of cycles to cause fracture

plastic zone size due to a previous overload

plastic zone size

plastic zone size corresponding to the ¢’th load cycle
Komin/Kmaz = stress intensity factor ratio
Kmin,rms/Kmaz,rms = root mean square stress intensity
factor ratio

stress range

crack work per unit thickness

dimensionless function, : = 2, 3,4

function

surface energy
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o

O.C

Ocl

Om
ama.:z:
Omin
Ao
Ao,
Adefy

Il

Poisson’s ratio
stress

stress which states for pre-loading history
critical stress

crack closure stress
mean stress
maximum stress
minimum stress
stress range

critical stress range
effective stress range

Lise Gansted
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